tan
Compute the tangent of x
expressed in radians.
Base.tan
— Functiontan(x)
Compute tangent of x
, where x
is in radians.
tan(A::AbstractMatrix)
Compute the matrix tangent of a square matrix A
.
If A
is symmetric or Hermitian, its eigendecomposition (eigen
) is used to compute the tangent. Otherwise, the tangent is determined by calling exp
.
Examples
julia> tan(fill(1.0, (2,2)))
2×2 Matrix{Float64}:
-1.09252 -1.09252
-1.09252 -1.09252
Methods
julia> methods(tan, (Any,), [Base, Base.Math, Base.MathConstants, Base.MPFR])
# 8 methods for generic function "tan" from Base: [1] tan(a::Float16) @ Base.Math math.jl:1511 [2] tan(a::ComplexF16) @ Base.Math math.jl:1512 [3] tan(x::BigFloat) @ Base.MPFR mpfr.jl:860 [4] tan(::Irrational{:π}) @ Base.MathConstants mathconstants.jl:149 [5] tan(::Missing) @ Base.Math math.jl:1533 [6] tan(x::T) where T<:Union{Float32, Float64} @ Base.Math special/trig.jl:216 [7] tan(x::Real) @ Base.Math math.jl:1528 [8] tan(z::Complex) @ complex.jl:932
Examples
julia> using UnicodePlots
julia> lineplot(-2π, 2π, tan, xlim=(-7, 7), ylim=(-4, 4))
┌────────────────────────────────────────┐ 4 │⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀│ tan(x) │⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⡇⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⡇⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⡇⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⣇⠎⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀│ f(x) │⠤⠤⠮⠤⠤⠤⠤⠤⠤⠤⡤⠮⠤⠤⠤⠤⠤⠤⠤⡤⡯⠤⠤⠤⠤⠤⠤⠤⡤⠮⠤⠤⠤⠤⠤⠤⠤⡤⠤⠤│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠁⠀⠀⠀⠀⠀⠀⠀⡴⠁⡇⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⡇⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⢀⠇⠀⠀⡇⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀│ -4 │⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-7⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀7⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Real Numbers
julia> tan(0)
0.0
julia> tan(-0.0)
-0.0
julia> tan(pi/4)
0.9999999999999999
julia> tan(pi/2)
1.633123935319537e16
julia> tan(pi)
0.0
Complex
julia> tan(0+0im)
0.0 - 0.0im
Tips
See Also
Extended Inputs
Matrix
With Array
like input:
julia> methods(tan, (Any,), [LinearAlgebra])
# 5 methods for generic function "tan" from Base: [1] tan(J::UniformScaling) @ LinearAlgebra /opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/uniformscaling.jl:173 [2] tan(A::Hermitian{var"#s5028", S} where {var"#s5028"<:Complex, S<:(AbstractMatrix{<:var"#s5028"})}) @ LinearAlgebra /opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/symmetric.jl:714 [3] tan(D::Diagonal) @ LinearAlgebra /opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/diagonal.jl:802 [4] tan(A::Union{Hermitian{var"#s5029", S}, Symmetric{var"#s5029", S}} where {var"#s5029"<:Real, S}) @ LinearAlgebra /opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/symmetric.jl:710 [5] tan(A::AbstractMatrix) @ LinearAlgebra /opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/dense.jl:1134
Tech Notes
tan(::Real)
: by pure juliatan(::BigFloat)
: by MPFR
Version History
Introduced in Julia v1.0 (2018)