Exponents
Base.exp — Function
exp(x)Compute the natural base exponential of x, in other words $ℯ^x$.
Examples
julia> exp(1.0)
2.718281828459045
julia> exp(im * pi) ≈ cis(pi)
trueexp(A::AbstractMatrix)Compute the matrix exponential of A, defined by
\[e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.\]
For symmetric or Hermitian A, an eigendecomposition (eigen) is used, otherwise the scaling and squaring algorithm (see [H05]) is chosen.
Examples
julia> A = Matrix(1.0I, 2, 2)
2×2 Matrix{Float64}:
1.0 0.0
0.0 1.0
julia> exp(A)
2×2 Matrix{Float64}:
2.71828 0.0
0.0 2.71828Base.expm1 — Function
expm1(x)Accurately compute $e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small values of x.
Examples
julia> expm1(1e-16)
1.0e-16
julia> exp(1e-16) - 1
0.0Base.exp10 — Function
exp10(x)Compute the base 10 exponential of x, in other words $10^x$.
Examples
julia> exp10(2)
100.0
julia> 10^2
100- H05Nicholas J. Higham, "The squaring and scaling method for the matrix exponential revisited", SIAM Journal on Matrix Analysis and Applications, 26(4), 2005, 1179-1193. doi:10.1137/090768539